Moving Consumer Unit

Joined
22 Aug 2004
Messages
27
Reaction score
0
Country
United Kingdom
Great Forum by the way, found out loads of info - thanks to all.

i'm installing a new consumer unit about 3.5m away from the meter. Having read other posts on this subject I see its recommended to fit a 100A dp isolator at the meter together with a fuse, no problem with the isolator, but haven't found the type of fuse I need and also what size (80A I guess). Can anyone suggest a supplier for a suitable fuseholder (preferably online).

As an extra point, I did try to get guidance from my REC, spent ages on the phone, travelled the world, and got nowhere. The only advice I got was that I needed an isolator every 2 metres of tails between the meter and the CU.

Any help would be appreciated
 
Sponsored Links
the device you are looking for is called a switchfuse
 
fletchermills said:
but haven't found the type of fuse I need and also what size (80A I guess).
Don't guess - this is a bad design methodology. What size tails are you going to use, and what size is your service fuse?

The only advice I got was that I needed an isolator every 2 metres of tails between the meter and the CU.
That's b*****ks.
 
I agree, the advice from the REC was stupid, why I was so pleased to find this forum and get proper advice.

Again from what I have read in this forum, 25mm tails are the way to go, the existing service fuse is marked 60/80A (havent actually pulled the fuse to see what value is inside).

Any suggestions where to buy a suitable switchfuse.

Thanks
 
Sponsored Links
any decent electrical wholesaler or an online supplier like tlc-direct.co.uk or electrcalshop.net
 
Found a 80A dp or 100A dp MCB (type C), any reason I shouldnt use that as an isolator instead of switch and fuse (its cheaper to).
 
AFAIK the C curve isn't an issue (but I might be wrong).

What is more likely to make this a no-no is the breaking capacity - if it's only 6kA, which a "standard" MCB is, I'm not sure that would be enough.

Again - I don't know, but I know that if I was thinking of doing it I'd find out first.
 
i strongly suspect its 10KA most more unusual mcbs are

6KA is just the basic domestic stuff ;)

the problem with a type C breaker is the earth fault loop impedence requirement
on a 5s disconnect cuircuit (ie a submain) a fuse allows a higher earth loop impedence than even a type B let alone a type C
 
plugwash said:
the problem with a type C breaker is the earth fault loop impedence requirement
on a 5s disconnect cuircuit (ie a submain) a fuse allows a higher earth loop impedence than even a type B let alone a type C
Where's the cpc with a pair of meter tails?
 
ok, afraid you lost me, whats cpc.

Do know the mcb i'm looking at is 10kA. Do you think the problem is it would trip too slow or too fast when compared with a fuse. I just thought this would be a better option than a fuse (safer and cheaper).
 
fletchermills said:
ok, afraid you lost me, whats cpc.
Circuit Protective Conductor, aka the earth wire. The point I was trying to make was that the breaker is only there to protect the tails - plugwash was talking about earth faults, but tails don't have an earth conductor...

Do know the mcb i'm looking at is 10kA. Do you think the problem is it would trip too slow or too fast when compared with a fuse. I just thought this would be a better option than a fuse (safer and cheaper).
The 6kA/10kA thing is about how much current an MCB can "handle". You might think that the more you try to shove through it the quicker it will trip, but there comes a point where it gets overwhelmed, and the contacts weld themselves shut instead, or it explodes/catches fire, and you don't want things exploding or catching fire in your CU.

The trip-time thing is what's indicated by the type of the MCB (B, C, D).

B, C, and D have different time/current curves for tripping. Type B will trip faster than type C for a given overcurrent, and type C will be faster than type D.

The other way of looking at it is that type Ds need more current than type Cs, which need more than type Bs, to trip in a given amount of time.

In summary:
[code:1]Type Will not trip in Will trip in
100ms at rating 100ms at rating

B 3 x 5 x
C 5 x 10 x
D 10 x 20 x [/code:1]


I tried to find a graph showing the typical curves superimposed, but failed miserably, however if you go here: http://www.tlc-direct.co.uk/Book/3.6.4.htm you'll find a number of individual time-current curves that you can compare.

Why does this matter? One of the jobs of a protective device is to disconnect the supply in the event of an earth fault - i.e. if something goes wrong with your fan heater or toaster, and a live conductor makes contact with the earthed case, then a current will flow to earth. What we need is for that current to get large enough for the fuse to blow or the MCB to trip (the situation of current happily flowing to earth without tripping the breaker, and therefore with the case of the toaster remaining live is a Bad Thing™.) We also want the current to get large enough quickly enough such that the case doesn't remain live for very long, and the earth conductor doesn't have time to get hot enough to melt. This is called the disconnection time, and clearly, as I=V/R, we need a low resistance to get a high current. A C type breaker needs a higher I to trip quickly than a type B does, so a circuit protected by a type C needs a lower earth loop resistance than one protected by a type B.

How much lower depends on how fast you want it to disconnect. The wiring regs say that a socket circuit should have a disconnect time of 400ms. Lighting circuits, by contrast, require a 5s disconnect time,and there is a case to be made for using type C breakers on lighting circuits because they are much less prone to tripping with the brief current surge that occurs when a lamp fails than a type B is. At 5 seconds the curves for type B and C breakers have almost met, i.e. there is very little difference in the earth loop resistance limits for a circuit with that disconnection time.

Not so at 400ms though. The typical maximum values, in ohms, for the earth loop resistance (Zs), for 32A type B and C MCBs are:

[code:1]Type 0.4s 5s

B 1.50 1.71
C 0.75 1.6[/code:1]

As you have a TN-C-S supply, you might get away with type Cs on socket circuits, as the maximum allowable external component of the earth loop impedance (Ze) for that type of supply is 0.35 ohms. (And of course the DNOs strive ceaselessly to ensure that this limit is never breached. :cool: )
For a TN-S supply, Ze is allowed to be 0.8 ohms, so type C breakers are flat-out not allowed for socket circuits, but even with TN-C-S, you can see that there's not much left for your R1+R2.

That, briefly :confused: , is why plugwash was talking about earth fault loop impedances.

It's a bit of a mish-mash of links, but you can read more about this topic here:

http://uk.altavista.com/web/results?kgs=0&tlb=1&ienc=utf8&q=host:www.tlc-direct.co.uk+disconnection

===============================================

PS - apologies for the delay - I've just found the emails reminding me to reply to this (don't ask... :oops: ). I know you'll have sorted yourself by now, but the info could be of use for people searching.
 
The mystery continues to deepen, BAS. Who sends you emails reminding you to reply to posts???
 
Well - OK - not specifically reminders to reply - I just meant the normal email notifications that you get when a new post has been made in a thread where you've already contributed...
 

DIYnot Local

Staff member

If you need to find a tradesperson to get your job done, please try our local search below, or if you are doing it yourself you can find suppliers local to you.

Select the supplier or trade you require, enter your location to begin your search.


Are you a trade or supplier? You can create your listing free at DIYnot Local

 
Sponsored Links
Back
Top